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Abstract
We consider curves of marginal models in two dimensions with N = (2, 2)

supersymmetry. In these theories, one can introduce twisted mass terms. The
BPS spectrum has different numbers of states in the weak and strong coupling
regimes. This spectral restructuring can be explained by the fact that two
regimes are separated by CMS on which some BPS states decay. We focus
on a special case of ZN -symmetric twisted masses. In this case, the general
solution due to Dorey greatly simplifies, and CMS can be found explicitly. For
small-N values numerical results are presented. In the large-N limit, we find
CMS analytically up to ln N/N corrections.

PACS number: 12.60.Jv

1. Introduction

Two-dimensional CP(N − 1) sigma models with N = (2, 2) supersymmetry present a
rich theoretical laboratory. In addition to the scale constant �, one can introduce other
dimensional parameters, the so-called twisted masses, which can be interpreted as expectation
values of a background twisted chiral multiplet [1, 2]. An exact description of the spectrum
of the Bogomol’nyi–Prasad–Sommerfield (BPS) states as a function of the twisted masses is
presented in [3]. The spectrum of the theory with nonzero twisted masses includes ‘dyons’
in shortened multiplets. The dyon carries both the topological and the Noether charges. The
dyon mass is given by the absolute value of the sum of the topological mass, mT , and the
Noether mass, mN , which are complex parameters,

M = |mT + mN |. (1)

The triangular inequality for complex numbers gives M � |mT | + |mN |. If the equality is
satisfied,

M = |mT | + |mN |, (2)
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this is a boundary situation of a spectral restructuring. A submanifold in the parameter space,
where the equality is satisfied is called CMS. If one crosses this manifold, discontinuities
appear in the spectrum. CMS, and the corresponding discontinuities of the BPS spectrum,
appear in theories with centrally extended supersymmetry algebras [4]. A detailed analysis of
metamorphosis of the BPS spectrum in the neighborhood of CMS is given in [5]. Dimension
of the submanifold, determined by the condition of the marginal stability, need not be one. It
can be larger depending on the number of degrees of freedom residing in the twisted masses.
First we must note that the only condition on the twisted masses is

N−1∑
l=0

ml = 0. (3)

This means that we have 2(N − 1) real independent parameters, for arbitrary N. However, we
will limit ourselves to a very special and very interesting case of ZN -symmetric masses,

ml = m e
2π il
N , l = 0, 1, . . . , N − 1. (4)

(Why it is of special physical interest is explained in [6].) If one introduces the masses ZN

symmetrically, one has only two independent real parameters, which come from the complex
parameter m, for any value of N. It is important to note that equation (3) is automatically
satisfied. The condition of CMS, equation (2), reduces the number of independent parameters
on CMS from two to one; thus, in this case CMS are indeed curves in the complex m-plane.
This is another reason to consider the theory with ZN -symmetric twisted masses. A general
consideration of CMS in the CP(N − 1) model is presented in [3]. For N = 2, the explicit
form of CMS is found in [7]. In this paper, we will consider CP(N − 1) sigma model with
ZN -symmetric twisted masses and arbitrary N. We will find explicit equations for CMS for
any N. We give numerical solutions for small N, and show that for large N CMS are circles
with

|m| = e�. (5)

The organization of the paper is as follows. In section 2, we introduce the ZN -symmetric
twisted masses and derive the equation determining CMS. We solve this equation numerically
for N = 4. In section 3, we determine CMS explicitly for large values of N. The notation
and a brief introduction for our framework are given in the appendix. In the first part of the
appendix, we briefly introduce N = 2 supersymmetric field theories in two dimensions (for
details see [8]). In the second part, we discuss the central extension of the theory and introduce
the mirror representation. Finally, we consider CP(N − 1) models with twisted masses and
derive the conditions on the twisted masses to produce CMS.

2. ZN -symmetric masses

In the ZN -symmetric case, the form of the twisted masses is given in equation (4), see
figures 1 and 2, which show ZN -symmetric masses for N = 3 and N = 4, respectively. The
twisted masses are measured in the units of the scale constant � which is set to 1 (see the
appendix for details). Figures 1 and 2 are plotted at m = e. In the general case, m = µ eiθ the
scale of the corresponding plots changes from e to µ and they are rotated counterclockwise
by the angle θ .

The bosonic part of the CP(N − 1) model deformed by twisted masses can be written as

S = 2

g2

∫
d2x

{
|(∂α − iAα)nl|2 +

∑
l

|(η − ml)n
l|2

}
, (6)
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Figure 1. Z3-symmetric masses in the complex m plane.

Figure 2. Z4-symmetric masses in the complex m plane.

with the condition
∑N−1

l=0 n̄lnl = 1 [6]. Aα and η are auxiliary fields, which have no kinetic
terms. nl (l = 0, 1, . . . , N − 1) is a complex field. The second term in the action represents
the twisted mass deformation. Equation (6) gives the action of the CP(N − 1) sigma model
in the linear gauged representation. The fermionic part of the action can be constructed by
requiring that the action is N = 2 supersymmetric [9]. The theory can be solved in 1/N

expansion for large values of N [10] (for nonvanishing twisted masses see [6]). The theory has
N vacua, and for each vacuum only one of the nl fields is nonvanishing. For example, say, for
the kth vacuum we can set η = mk so that the l = k term in the sum vanishes. For the other
terms to vanish we require nl = 0 for l �= k. If the twisted masses are of the form given by
equation (4), then the action has an apparent ZN symmetry. This symmetry is spontaneously
broken, as the vacuum is not ZN symmetric.

Although the representation given in equation (6) is very transparent, it is not convenient
for our purposes. It is more convenient for us to work in the mirror representation which is
described in the appendix.
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Figure 3. Z3-symmetric vacua in the complex σ -plane.

Hori and Vafa, who originally suggested the mirror representation, derived it in the form of
the Toda chain. Since then a few other equivalent representations were suggested. Following
Dorey [3] we will exploit a twisted chiral superfield � representation.

In the mirror representation [11], the superpotential is given by (see the appendix)

Weff(�) = 1

4π

(
N� −

N−1∑
l=0

ml ln

(
2

µ
(� + ml)

))
, (7)

where � is the twisted chiral field with the lowest component σ . The vacua of the theory are
the solutions of the following equation:

N−1∏
l=0

(σ + ml) − 1 = 0, (8)

where we set the scale constant � = 1. The left-hand side of this equation is a polynomial of
degree N. In the general case, it is not possible to find the roots of this equation analytically
for N � 5. However, the ZN symmetry of the twisted masses, given in equation (4), allows
us to find the roots as

σk = (1 + (−m)N)
1
N e

i2πk
N . (9)

The vacua for N = 3 and N = 4 are shown in figures 3 and 4. Here we note the difference
between the cases of odd and even values of N. Figure 3 is flipped with respect to figure 1, but
figure 4 has the same form as figure 2. Because of this difference, we will see that CMS will
be different for odd and even values of N (at finite N, not necessarily for large N).

With the explicit solution for σk given in equation (9), we can rewrite Weff in the critical
points (see equations (A.19) and (A.20) and [2, 3]),

Weff(σk) = 1

4π

(
Nσk −

N−1∑
l=0

m e
i2πl
N ln

(
σk + m e

i2πl
N

))

= 1

4π
e

i2πk
N

(
Nσ0 −

N−1∑
l=0

ml ln (σ0 + ml)

)
, (10)
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Figure 4. Z4-symmetric vacua in the complex σ -plane.

where3

σ0 = (1 + (−m)N)
1
N . (11)

We used the fact that
∑N−1

l=0 ml = 0, and also the angular periodicity of the masses. Here we
observe an important feature, namely, the index k in Weff(σk) appears only in the phase and,
as we will see, the phase factor will have no impact on the CMS consideration. Let us now
consider a soliton interpolating between two vacua and carrying the topological charge

−→
T .

For each allowed value of the topological charge
−→
T , the spectrum also includes an infinite

tower of dyons with the global charge
−→
S = s

−→
T , where s ∈ Z. The vector

−→
T is of the form

(0, . . . ,−1, . . . , 1, . . . , 0) ( for instance, for a soliton interpolating between the vacua σk and
σl,

−→
T k = −1 and

−→
T l = 1). One can also introduce a topological mass vector,

−→mD = (Weff(σ0),Weff(σ1), . . . ,Weff(σN−1)). (12)

With these definitions, we can express the central charge in a compact form,

Z = −i(
−→
m · −→

S + −→mD · −→
T ). (13)

The central charge, connecting the vacua k and l, takes the form

Zkl = −i(
−→
m · −→

Skl + −→mD · −→
Tkl)

= −i (s(mk − ml) + (mDk − mDl))

= −im
(
e

i2πk
N − e

i2πl
N

)s +
2i

4πm

Nσ0 −
N−1∑
j=0

mj ln(σ0 + mj)

 . (14)

The overall factor −im
(
e

i2πk
N − e

i2πl
N

)
plays no role in the determination of CMS. The condition

for CMS is that the terms in the braces must have the same phase so that |Z| = |mN | + |mT |
is satisfied. It is clear that s is a real number. This implies that the second term must be real
too on CMS. This, in turn, implies

Re

 1

2πm

Nσ0 −
N−1∑
j=0

mj ln(σ0 + mj)

 = 0. (15)

3 Note that σ0 is not well defined at (−m)N = −1, at which |m| = 1. However in the subsequent sections we will
see that |m| = 1 is not on the CMS, so this will not affect our discussion.



11156 S Ölmez and M Shifman

Figure 5. The contour plot for CMS for N = 2 in the complex m2-plane.

Equation (15) is our basic relation determining CMS. It can be solved analytically for large N.
The solution will be presented in section 3. Small-N solutions can be found numerically. For
N = 2 this was done in [7]. For N = 2, equation (15) reduces to

Re

{
ln

1 +
√

1 + 4/m2

1 −
√

1 + 4/m2
− 2

√
1 + 4/m2

}
= 0. (16)

The numerical solution is reproduced in figure 5. In equation (16), we observe that the twisted
mass parameter appears in the form m2, not m. For N = 2 the physical sheet of the Riemann
surface is the complex m2-plane, or, equivalently half of the complex m-plane. We will see
that this is a general result; for generic N the physical parameter is mN rather than m and,
therefore, it is sufficient to solve equation (15) for |Arg(m)| < π

N
, which is mapped onto the

complete complex mN -plane. To illustrate the behavior of states near CMS, let us consider
an elementary state {T = 0, s = 1} where T and s show the topological and Noether charges,
respectively. From figure 5, we see that CMS cuts the real axis at about 2.3. For Re m2

slightly larger than this value, the state {T = 0, s = 1} becomes a marginally bound state of
two fundamental solitons {T = 1, s = 0} and {T = −1, s = 1}. If we cross CMS and move
to Re m2 smaller than 2.3, the interaction becomes repulsive and all the tower of excited states
disappears [5, 7]. For N = 4 CMS is given in figure 6. (The figure is scaled by plotting e−4m4

rather than m4.) We see that already at N = 4, CMS is pretty close to a circle. It becomes
perfectly circular at N → ∞.

3. The large-N limit

In the remainder of the paper we will construct CMS for large N. Before delving into a detailed
analysis, let us qualitatively discuss the behavior of the function in equation (15). The first
term is of the order N whereas the second term, which is a sum, has oscillating terms. Although
there are N terms, the result of the summation will be of the order of |m| rather than of the
order of N due to this oscillatory behavior. If the sum is to be of the order N, the argument
of the logarithm must be exponentially small in N for at least some terms. The main strategy
will be to investigate the sum to get a term of the order N, which can cancel the term Nσ0 in
equation (15). In our analysis, we will constrain ourselves to the region where |Arg(m)| < π

N
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Figure 6. The contour plot for CMS for N = 4 in the complex m4-plane.

in the complex m-plane. This is the region which is mapped onto the complete complex plane
when we use mN as our parameter instead of m. Due to the (−1)N term in equation (9), we
see that it will be convenient to carry out the analysis for even and odd N values separately.

3.1. CMS for large and evenN

The results in the previous section show that a soliton is on the CMS if

Re

 1

m

Nσ0 −
N−1∑
j=0

mj ln(σ0 + mj)

 = 0. (17)

To find the solution to this equation we will have to use slightly different expansions of σ0

depending on whether |m| > 1, |m| = 1 or |m| < 1, which suggests separate analysis of the
problem in three regions.

3.1.1. |m| > 1. In this case, the terms j = N−2
2 , N

2 , N+2
2 dominate the sum. (Actually we will

find out that the central term, j = N
2 , is the most dominant.) As |m| > 1 and |Arg(m)| < π

N
,

we can use the expansion (1 + mN)
1
N � m + 1

NmN−1 to get

N−1∑
j=0

mj ln(σ0 + mj) � −m ln

(
1

NmN−2

)
− m

(
1 − i4π

N

)
ln

(
1

NmN−2
− m

4π i

N

)

−
(

1 +
i4π

N

)
ln

(
1

NmN−2
+ m

4π i

N

)
. (18)

The first line is the contribution coming from the j = N
2 term, whereas the second and the

third lines come from the j = N±2
2 terms. The first line presents the dominant term in the

large-N limit. If we define the twisted mass parameter m in polar coordinates, m = µ eiθ ,
where µ = |m|, we can separate the real and imaginary parts as follows:

N−1∑
j=0

mj ln(σ0 + mj) = −mN

[
−N − 1

N
ln µ + O

(
ln N

N

)]
. (19)
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Here O
(

ln N
N

)
stands for terms of the order ln N

N
. Now, equation (17) implies

N

(
1 − N − 1

N
ln µ

)
= 0, (20)

which in turn entails

µ → e (21)

as N → ∞ (N even). As we have discussed in the N = 2 case, the relevant parameter is mN

rather than m. The solution described above, which is an arc of a circle of radius e and angle
|θ | < π

N
, is mapped onto the complete circle of radius eN in the complex mN -plane.

3.1.2. |m| = 1. In this case we can use the expansion (1 + mN)
1
N � 1 + m

N
ln 2. We can again

approximate the sum by the dominant terms, but in this case the argument of the logarithm
is of the order of 1/N ; hence it is impossible to cancel the leading term of the order N in
equation (15) with this ln N term. Therefore, |m| = 1 is not on the CMS for large N (Neven).

3.1.3. |m| < 1. In order to have a complete and careful analysis, we can subdivide this
region into two parts as |m| → 1−ε (0 < ε � 1 ) and |m| � 1. The main difference between
the two regions is that for the former, we can approximate the sum with the dominant terms,
whereas for the latter one each term produces a contribution of the same order, and we convert
the sum to an integral, which is applicable in the large-N limit. In both cases, the expansion
(1 + mN)

1
N � 1 + mN

N
is applicable. Let us start with the first case, |m| → 1 − ε

N−1∑
j=0

mj ln(σ0 + mj) � −m

(
1 − i4π

N

)
ln

(
1 +

mN

N
− m

(
1 − i4π

N

))

− m

(
1 +

i4π

N

)
ln

(
1 +

mN

N
− m

(
1 +

i4π

N

))
− m ln

(
1 +

mN

N
− m

)
. (22)

Again, inspecting the arguments of the logarithms, we note that we end up with terms of
the order ln N , which cannot cancel the leading term in equation (15). Therefore, we conclude
that |m| → 1 − ε does not belong to CMS. In the second case, |m| � 1, we need to change
our strategy. The sum cannot be approximated by a few dominant terms, as they contribute
almost equally. So we convert the sum to a corresponding integral,

N−1∑
j=0

mj ln(σ0 + mj) � N

2π i

∫ 2π(N−1)

N

0
im ln(σ0 + m eix) dx

� −m ln(1 + m). (23)

This sum is of the order of m ln(m + 1) � O(1), which cannot cancel the leading term
in equation (15). Therefore, we conclude that |m| � 1 does not belong to CMS either.
Combining all the results above, we see that in the large-N limit (with N even ),

µN(θ) = eN, −π < θ < π, (24)

which means that CMS are circles of the radius eN in the complex mN -plane (in the complex
m-plane we have CMS at |m| = e�).
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3.2. CMS for large and odd N

The analysis for odd N is slightly different than for the even N case. For odd N, we have
σ0 = (1 − mN)

1
N . The large-N expansion will have an extra phase factor compared to the

even N case. We will present the analysis for |m| > 1, which will produce the CMS for odd N.

3.2.1. |m| > 1. The expansion of (1 − mN)
1
N depends on the phase of m. For

− π
N

< Arg(m) < 0, we can use the expansion (1 − mN)
1
N � ei π

N

(
m − 1

mN−1
1
N

)
. In this

case, the j = N+1
2 term dominates the sum. With this expansion, equation (17) reads

Re
{
N ei π

N + ei π
N ln

( − m−N+1 ei π
N

)} = 0, (25)

where we kept only O(N) terms. In the polar coordinates, m = µ eiθ with − π
N

< θ < 0,
equation (25) reduces to

N − (1 − N) ln µ +
π

N
(π + Nθ) = 0. (26)

This equation has the following solution:

µ(θ) = e1+ π

N2 (π+Nθ)
, − π

N
< θ < 0. (27)

At N → ∞, this result reduces to the even-N result, which is expected, of course. For
0 < Arg(m) < π

N
, we can use the expansion (1 − mN)

1
N � e−i π

N

(
m − 1

mN−1
1
N

)
. Now the

j = N−1
2 term dominates the sum. Making the same steps we get

µ(θ) = e1+ π

N2 (π−Nθ)
, 0 < θ <

π

N
. (28)

We can combine both results as follows,

µ(θ) = e1+ π

N2 (π−N |θ |)
, − π

N
< θ <

π

N
. (29)

As in the even-N case, we need to map this solution onto the complex mN -plane. Then CMS
becomes

µN(θ) = eN+ π
N

(π−|θ |), −π < θ < π. (30)

This result reduces to the even-N result at N → ∞. Collecting all the results for even and
odd N, we conclude that CMS are circles of radius eN in the complex mN -plane. Numerical
solutions for CMS for N = 10 and N = 11 are given in figures 7 and 8. We plotted e−NmN

rather than mN so that the radius becomes unity in the large-N limit. We note that CMS for
N = 10 is a circle and its radius is slightly less than unity, which is the case expected at
N → ∞. The deviation from circle is more pronounced for odd N , as seen in figure 8. This
behavior is consistent with the large-N limit given in equation (30), from which we see that
the radial coordinate depends on the angle. At θ = 0, the radius is enlarged by a factor of

e
π2

N , which is about 2.45 at N = 11. The even − N result, equation (20), gets an enlargement
factor of e

1
N for any angle, which is close to unity at N = 10. This explains why even − N

results converge to N → ∞ limit faster than odd − N results.

4. Summary

In this paper, we discussed CMS in the N = (2, 2) supersymmetric CP(N −1) model with the
ZN -symmetric twisted masses. The CMS condition is given by equation (15). The solution to
this equation is given in the complex mN -plane. We show that, for large values of N, CMS are
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Figure 7. The contour plot for CMS for N = 10 in the complex m10-plane.

Figure 8. The contour plot for CMS for N = 11 in the complex m11-plane.

circles of the radius of eN in the complex mN -plane, which corresponds to |m| = e. This result
is approximate up to terms of the order ln N

N
which die off rather slowly. This is the reason

to have different CMS curves for odd and even N , for small N, as formulated in equations
(24) and (30) respectively. If we consider the N → ∞-limit, at which ln N

N
� 1, CMS are

circles of the radius eN for odd and even N . It is curious to note that in a non-supersymmetric
CP(N − 1) model, the curve of the phase transition is also circular at the large N [6].
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Appendix

A.1. N = 2 Supersymmetry in two dimensions

N = 1 supersymmetry algebra [12] has an U(1)R-symmetry under which the left-handed
supercharges have charge −1 and the right-handed ones have charge +1. One can obtain N = 2
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supersymmetry in two dimensions by dimensional reduction from N = 1 supersymmetry in
four dimensions [8]. Eliminating the dependence of fields on two coordinates, say x2 and x3,
we get the two-dimensional Lorentz group and an internal symmetry group associated with
the rotations around the eliminated coordinates. This internal symmetry is called the U(1)A

symmetry. With this reduction, a left-handed spinor in four dimensions becomes the Dirac
spinor in two dimensions, which consists of one left- and one right-handed spinor with the
opposite U(1)A charges. The supercharges of the four-dimensional theory reduce to two Dirac
spinors QL,R and Q̄L,R . L,R shows the two-dimensional chirality whereas bar shows the
four-dimensional chirality. The Dirac spinors QL,R and Q̄L,R carry the U(1)A charges −1, +1
and +1,−1, respectively. They are Hermitian conjugate to each other, (QL,R)† = Q̄L,R . The
anticommutation relations in two dimensions can be written as

{QL, Q̄L} = 2(H + P),

{QR, Q̄R} = 2(H − P), (A.1)

Q2
L = Q2

R = Q̄2
L = Q̄2

R = 0,

where H and P are the Hamiltonian and the momentum operators. All the other commutators
vanish unless there are central charges, of which we will speak later. In two dimensions, the
U(1)R-symmetry of four-dimensional theory appears as another internal symmetry which is
called the U(1)V-symmetry. Under the U(1)V symmetry, the supercharges QL,R and Q̄L,R

have the charges −1,−1 and +1, +1, respectively. So, in two dimensions, there are two U(1)

R-symmetry groups, U(1)V and U(1)A. The supercharges can be grouped as

QR Q̄L

QL Q̄R,
(A.2)

where the first (second) line has the U(1)A charge +1 (−1) and the left (right) column has the
U(1)V charge −1 (+1). An important property of N = 2 supersymmetry in two dimensions
is that it is possible to have a field � which obeys

D̄L� = 0 = DR�, (A.3)

(compare with the chiral field which obeys D̄L
 = 0 = D̄R
) which is called the twisted
chiral field. Using the Bianchi identities, it is easy to get �,

� = 1
2 {D̄L,DR}. (A.4)

A.2. Central extension and mirror symmetry

The N = 2 supersymmetry algebra can be extended by the inclusion of central charges which
are associated with the topological charge of the soliton sectors [14]. As the central term
should commute also with R-symmetry, the central extension breaks the U(1)V or/and the
U(1)A symmetries.

For instance, consider a massive theory in which the U(1)V symmetry is broken by a
superpotential. Due to this central extension, we have nonzero (anti)commutation relations in
addition to equation (A.1),

{QL,QR} = 2Z, {Q̄L, Q̄R} = 2Z∗,

{QL, Q̄R} = 0, {Q̄L,QR} = 0,

[FA,QL] = −QL, [FA,QR] = QR, [FA, Q̄L] = Q̄L, [FA, Q̄R] = −Q̄R,

(A.5)
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where FA denotes the generator of the U(1)A R-symmetry. Using the (anti)commutation
relations in equations (A.1) and (A.5) we observe that the mass of the particle in a sector with
central charge Z is bounded from below by

M � |Z|. (A.6)

One can derive this result by calculating the anticommutator of the operators (H − P)QL −
ZQ̄R and its Hermitian conjugate, which is positive semi-definite by construction. The
equality in equation (A.6) is satisfied if

(H − P)QL = ZQ̄R, (A.7)

which is called the BPS condition. Consider eigenstates of energy and momentum. For these
eigenstates, equation (A.7) and its Hermitian conjugate imply that QL and Q̄L are proportional
to Q̄R and QR , respectively. So the supersymmetry multiplet is shortened. This is called a
BPS multiplet.

We can also consider a theory in which the U(1)A symmetry is broken. In this case, in
addition to equation (A.1), the algebra reads

{QL,QR} = 0, {Q̄L, Q̄R} = 0,

{QL, Q̄R} = 2Z̃, {Q̄L,QR} = 2Z̃∗,
[FV,QL] = −QL, [FV,QR] = −QR, [FV, Q̄L] = Q̄L, [FV, Q̄R] = Q̄R,

(A.8)

where FV denotes the generator of the U(1)V R-symmetry. It is interesting to note that the
(anti)commutation relations would be the same in the theories with broken U(1)V and U(1)A

symmetry if

FA ←→ FV (A.9)

QR ←→ Q̄R. (A.10)

This automorphism of the N = 2 supersymmetry algebra is called the mirror symmetry [11].

A.3. CP(N-1) models with twisted masses

Consider a superrenormalizable U(1) theory with N chiral superfields 
i with +1 charge, a
gauge superfield and the corresponding field strength �, which is a twisted chiral superfield.
The kinetic term and the interaction term are written as a D-term in N = 2 superspace,

LD =
∫

d4θ

(
N∑

i=1


̄i e2V 
i − 1

2 e2
Tr �̄�

)
. (A.11)

It is convenient to combine the Fayet–Iliopoulos term and the topological θ term in the twisted
F term with the Lagrangian,

LF =
∫

d2θ W(�) + H.C. (A.12)

The twisted superpotential is

W(�) = iτ�

2
, (A.13)

where τ = ir + θ
2π

[8]. Now let us consider renormalizability of the theory without the twisted
masses. Gauge theories in two dimensions are superrenormalizable. In our case, the only
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divergence comes from a one-loop diagram and it can be absorbed into redefinition of the FI
parameter as follows,

r(µ) = r0 − N

4π
ln

(
M2

UV

µ2

)
, (A.14)

where MUV is the ultra violet cut-off and µ is the RG subtraction scale. With the renormalized
FI term, the superpotential in equation (A.13) reads

Weff(�) = i

2
�

(
τ̂ − N

2π i
ln

(
2�

µ

))
, (A.15)

where τ̂ = ir(µ) + θ
2π

+ n∗ with n∗ chosen to minimize the potential energy. The condition
for a supersymmetric vacuum is

∂

∂σ
Weff = 0, (A.16)

where σ is the lowest component of �. Equation (A.16) has the following solution,

σN =
(µ

2

)N

e2π iτ(µ) ≡ �̃N , σk = �̃ e
2π ik
N (A.17)

The mass of the soliton interpolating between vacua k and l is given by

M = 2|W(σk) − W(σl)|. (A.18)

When we include the twisted masses in our theory, we have to modify equation (A.15). Now
the superpotential reads

Weff(�) = i

2

(
�τ̂ − 1

2π i

N−1∑
l=0

(� + ml) ln

(
2

µ
(� + ml)

))
. (A.19)

τ̂ in this equation is determined by setting ∂
∂σ

Weff = 0. Imposing this condition for τ̂ , we get,

Weff(�) = 1

4π

(
N� −

N−1∑
l=0

ml ln

(
2

µ
(� + ml)

))
. (A.20)

This is the main formula that we will use to extract the topological masses of the solitons
(for a pedagogical introduction to solitons see [13]). For this aim, we will also need
the supersymmetric vacua as the solitons are the objects interpolating between different
supersymmetric vacua. The equation for supersymmetric vacua is given by

N−1∏
l=0

(σ + ml) − �̃N = 0, (A.21)

which gives equation (A.17) if the twisted masses are all vanishing. Calling the roots of this
polynomial equation σl , we see that there are N supersymmetric vacua with σ = σl . The BPS
spectrum includes solitons interpolating between different vacua, and carrying topological
charges Ti as well as elementary particles carrying global U(1) charges Si . For each pair
of supersymmetric vacua, there exists a soliton interpolating between them, which means
that there are N(N−1)

2 solitons carrying topological charge
−→
T . For each allowed value of the

topological charge
−→
T , the spectrum also includes an infinite tower of dyons with the global

charge
−→
S = s

−→
T , where s ∈ Z. One can also introduce topological mass vector,

−→mD = (Weff(σ0),Weff(σ1), . . . ,Weff(σN−1)). (A.22)
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With these definitions, we can express the central charge as

Z = −i(
−→
m · −→

S + −→mD · −→
T ). (A.23)

In order to have a BPS state to decay into its constituents, its mass must be equal to the sum
of the masses of its constituents,

|Z| = |−→m · −→
S | + |−→mD · −→

T |, (A.24)

which is equivalent to requiring that each term in Z to have the same phase. This is the
condition that determines CMS.
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